\scr{ABCDEF} \\
\Bbb{ABCDEF} \\
\bf{ABCDEF} \\
\tt{ABCDEF} \\
\cal{ABCDEF} \\
\rm{ABCDEF} \\
\frak {ABCDEF}
(O,\vec i, \vec j)
\begin{matrix} a & b \\ c & d \end{matrix}
\begin{pmatrix} a & b \\ c & d \end{pmatrix}
\begin{bmatrix} a & b \\ c & d \end{bmatrix}
\begin{vmatrix} a & b \\ c & d \end{vmatrix}
\begin{cases} 10x+3y = 2 \\ 3x+13y = 4 \\ 43x+13y+2z = 14 \end{cases}
\begin{cases} 10x+3y &= 2 \\ 3x+13y &= 4 \\ 43x+y+2z &= 14 \end{cases}
{a}\equiv{b}\pmod{2\pi} \\ {a}\equiv{b}\mod{2\pi} \\ {a}\equiv{b}\pod{2\pi}
\pmb{a+b-c} (formule en gras) \quad \style{color: blue}{a+b}+ \style{padding: 3pt; background-color:yellow}{c+d}
f(x)= \begin{cases} -x^{2} &\text{si $x < 0$} x &\text{si $0 \leq x \leq 1$} x^{2} &\text{si $x>1$} \end{cases}
\begin{align} f(x) &= x^2+6x-4 &= x^2 +6x +9 -9 -4 &= (x+3)^2-13 \end{align}
\begin{align*} f(x) &= x^2+6x-4 \\ &= x^2 +6x +9 -9 -4 \\ &= (x+3)^2-13 \end{align*}
\begin{array}{|c|c|c|c|} \hline n & \text{Left} & \text{Center} & \text{Right} \\ \hline 1 & 0.2 & 1 & 125 \\ \hline 2 & 1 & 189 & -8 \\ \hline 3 & 20 & 200 & 1+10i \\ \hline \end{array}
\cfrac ab \frac ab \tfrac ab
{\Large {C}_n^k} = \binom nk=\frac{n!}{(n-k)!k!} =\binom{n}{n-k}
\int_a^b{f(x)\ dx} \intop_a^b {f(x)\ dx}
$$\text {Triangle de Pascal}$$ \begin{gather*} 1 \\ 1&1 \\ 1&2&1 \\ 1&3&3&1 \\ 1&4&6&4&1 \\ \end{gather*}
\begin{equation} \int_0^\infty \frac{x^3}{e^x-1}\, dx = \frac{\pi^4}{15} \label{eq:sample} \end{equation}
\color{red}{ \ln\left({\frac{1+x}{1+x^2}}\right) \quad e^{\frac{1+x}{1-x}} \quad \exp\left({\frac{1+x}{1-x}}\right) }
\require{extpfeil}
\xtwoheadrightarrow{a+b+c} \\
\xtwoheadleftarrow{a+b+d+c} \\
\xmapsto{\text{long simple arrow!}} \\
\xlongequal{\text{long equals sign}} \\
\Newextarrow{\xtriple}{10,10}{0x21db}
\Newextarrow{\xtriplepadded}{50,50} {0x21db}
\xtriple{\text{extended triple arrow!}}
Connectez vous pour ajouter des commentaires.