\scr{ABCDEF} \\
\Bbb{ABCDEF} \\
\bf{ABCDEF} \\
\tt{ABCDEF} \\
\cal{ABCDEF} \\
\rm{ABCDEF} \\
\frak {ABCDEF}
$$
\scr{ABCDEF} \\
\Bbb{ABCDEF} \\
\bf{ABCDEF} \\
\tt{ABCDEF} \\
\cal{ABCDEF} \\
\rm{ABCDEF} \\
\frak {ABCDEF}
$$
$$(O,\vec i, \vec j)$$
\begin{matrix}
a & b \\
c & d
\end{matrix}
\begin{matrix}a & b \\c & d\end{matrix}
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
\begin{pmatrix}a & b \\c & d\end{pmatrix}
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
\begin{bmatrix}a & b \\c & d
\end{bmatrix}
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
\begin{vmatrix}a & b \\c & d\end{vmatrix}
\begin{cases}
10x+3y = 2 \\
3x+13y = 4 \\
43x+13y+2z = 14
\end{cases}
\begin{cases}
10x+3y = 2 \\
3x+13y = 4 \\
43x+13y+2z = 14
\end{cases}
\begin{cases}
10x+3y &= 2 \\
3x+13y &= 4 \\
43x+y+2z &= 14
\end{cases}
\begin{cases}
10x+3y &= 2 \\
3x+13y &= 4 \\
43x+13y+2z &= 14
\end{cases}
{a}\equiv{b}\pmod{2\pi} \\
{a}\equiv{b}\mod{2\pi} \\
{a}\equiv{b}\pod{2\pi}
$${a}\equiv{b}\pmod{2\pi} \\{a}\equiv{b}\mod{2\pi} \\{a}\equiv{b}\pod{2\pi} $$
\pmb{a+b-c} (formule en gras) \quad
\style{color: blue}{a+b}+
\style{padding: 3pt;
background-color:yellow}{c+d}
$$ \pmb{a+b-c} \\
\style{color: blue}{a+b}+\style{padding: 3pt; background-color: yellow}{c+d} $$
f(x)=
\begin{cases}
-x^{2} &\text{si $x < 0$}
x &\text{si $0 \leq x \leq 1$}
x^{2} &\text{si $x>1$}
\end{cases}
$$
f(x)=
\begin{cases}
-x^2 &\text{si $x < 0$}\\
x &\text{si $0\leq x \leq 1$}\\
x^2 &\text{si $x>1$}
\end{cases}
$$
\begin{align}
f(x) &= x^2+6x-4
&= x^2 +6x +9 -9 -4
&= (x+3)^2-13
\end{align}
\begin{align}
f(x)&= x^2+6x-4\\
&= x^2 +6x +9 -9 -4 \tag{1}\\
&= (x+3)^2-13
\end{align}
\begin{align*}
f(x) &= x^2+6x-4 \\
&= x^2 +6x +9 -9 -4 \\
&= (x+3)^2-13
\end{align*}
\begin{align*}
f(x)&= x^2+6x-4\\
&= x^2 +6x +9 -9 -4 \\
&= (x+3)^2-13
\end{align*}
\begin{array}{|c|c|c|c|}
\hline
n & \text{Left} & \text{Center}
& \text{Right} \\
\hline
1 & 0.2 & 1 & 125 \\
\hline
2 & 1 & 189 & -8 \\
\hline
3 & 20 & 200 & 1+10i \\
\hline
\end{array}
\begin{array}{|c|c|c|c|}
\hline
n & \text{Left} & \text{Center} & \text{Right} \\ \hline
1 & 0.2 & 1 & 125 \\ \hline
2 & 1 & 189 & -8 \\ \hline
3 & 20 & 200 & 1+10i \\ \hline
\end{array}
\cfrac ab
\frac ab
\tfrac ab
$$\cfrac ab \quad \frac ab \quad \tfrac ab $$
{\Large {C}_n^k} =
\binom nk=\frac{n!}{(n-k)!k!}
=\binom{n}{n-k}
$${\Large {C}_n^k} =\binom nk=\frac{n!}{(n-k)!k!}=\binom{n}{n-k}
$$
\int_a^b{f(x)\ dx}
\intop_a^b {f(x)\ dx}
$$\int_a^b{f(x)\ dx} \quad \intop_a^b {f(x)\ dx} $$
$$\text {Triangle de Pascal}$$
\begin{gather*}
1 \\
1&1 \\
1&2&1 \\
1&3&3&1 \\
1&4&6&4&1 \\
\end{gather*}
$$\text {Triangle de Pascal}$$
\begin{gather*}
1 \\
1&1 \\
1&2&1 \\
1&3&3&1 \\
1&4&6&4&1 \\
\end{gather*}
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,
dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\begin{equation}
\int_0^\infty \frac{x^3}{e^x-1}\,dx = \frac{\pi^4}{15}
\label{eq:sample}
\end{equation}
\color{red}{
\ln\left({\frac{1+x}{1+x^2}}\right) \quad
e^{\frac{1+x}{1-x}} \quad
\exp\left({\frac{1+x}{1-x}}\right)
}
$$
\color{red}{
\ln\left({\frac{1+x}{1+x^2}}\right) \quad
e^{\frac{1+x}{1-x}} \quad
\exp\left({\frac{1+x}{1-x}}\right)
} $$
\require{extpfeil}
\xtwoheadrightarrow{a+b+c} \\
\xtwoheadleftarrow{a+b+d+c} \\
\xmapsto{\text{long simple arrow!}} \\
\xlongequal{\text{long equals sign}} \\
\Newextarrow{\xtriple}{10,10}{0x21db}
\Newextarrow{\xtriplepadded}{50,50} {0x21db}
\xtriple{\text{extended triple arrow!}}
$$\require{extpfeil}
\xtwoheadrightarrow{a+b+c} \\
\xtwoheadleftarrow{a+b+d+c} \\
\xmapsto{\text{long simple arrow!}} \\
\xlongequal{\text{long equals sign}} \\
\Newextarrow{\xtriple}{10,10}{0x21db}
\Newextarrow{\xtriplepadded}
{50,50}{0x21db}
\xtriple{\text{extended triple arrow!}}
$$