Trigonométrie : Exercice 9 2ème année secondaire
Calcul dans IRProblèmes du 1er et du second degréNotion de polynômesArithmetiqueCalcul vectorielBarycentreTranslationsHomothetiesRotationsSuitesFonctionsTrigonométrieGéométrie analytiqueGéométrie dans l'espaceStatistiquesQCM
24 exercices
Exercice 9 --- (id : 910)
correction
Rappel
🔸$\cos^2x+\sin^2x=1$
🔸$\tan x=\dfrac{\sin x}{\cos x}$
1
$1+\tan^2x$ $=1+\left({\dfrac{\sin x}{\cos x}}\right)^2$ $=1+\dfrac{\sin^2x}{\cos^2x}$ $=\dfrac{\cos^2x}{\cos^2x}+\dfrac{\sin^2x}{\cos^2x}$ $=\dfrac{\cos^2x+\sin^2x}{\cos^2x}=\dfrac{1}{\cos^2x}$ $=\dfrac{\sin^2x+\cos^2x}{\sin^2x}$
2
$1+\dfrac{1}{\tan^2x}$ $=1+\dfrac{1}{\dfrac{\sin^2x}{\cos^2x}}$ $=1+\dfrac{\cos^2x}{\sin^2x}$ $=\dfrac{\sin^2x}{\sin^2x}+\dfrac{\cos^2x}{\sin^2x}$ $=\dfrac{\sin^2x+\cos^2x}{\sin^2x}$ $=\dfrac{1}{\sin^2x}$
3
$\cos^2x-\sin^2x$ $=(1-\sin^2x)-\sin^2x$ $=1-2\sin^2x$
4
$(\cos x+\sin x)^2$ $=\underbrace{\cos^2 x+\sin^2 x}_{1}+2\cos x\sin x$ $=1+2\cos x\sin x$
5
$(\cos x-\sin x)^2$ $=\underbrace{\cos^2 x+\sin^2 x}_{1}-2\cos x\sin x$ $=1-2\cos x\sin x$