Exercice 6 --- (id : 905)
Trigonométrie: Exercice 6
correction

Rappels

🔸$\boxed{\cos^2x+\sin^2x=1}$ $\Longrightarrow \boxed{1-\cos^2x=\sin^2x}$
🔸$\boxed{\tan x=\dfrac{\sin x}{\cos x}}$ $\Longrightarrow \boxed{\tan^2x=\dfrac{\sin^2x}{\cos^2x}}$
🔸$\boxed{\cos^2x-\sin^2x=1-2\sin^2x}$

👉On sait que pour tous réels $x$ et $y$, $\cos^2x+\sin^2x=1$ et $\cos^2y+\sin^2y=1$ donc :
$\cos^2x+\sin^2x=\cos^2y+\sin^2y$
$\iff \cos^2x-\cos^2y=\sin^2y-\sin^2x$
👉$\tan^2x-\sin^2x$ $=\dfrac{\sin^2x}{\cos^2x}-\sin^2x$ $=\dfrac{\sin^2x-\cos^2x\sin^2x}{\cos^2x}$ $=\dfrac{\sin^2x(1-\cos^2x)}{\cos^2x}$ $=\dfrac{\sin^2x.\sin^2x}{\cos^2x}$ $=\dfrac{\sin^2x}{\cos^2x}.\sin^2x$ $=\tan^2x.\sin^2x$
👉 $(\cos^2x+\sin^2x)^2=1^2=1$ $\iff (\cos^2x)^2+(\sin^2x)^2+2\cos^2x\sin^2x=1$ $\iff \cos^4x+\sin^4x+2\cos^2x\sin^2x=1$ $\iff \cos^4x+\sin^4x=1-2\cos^2x\sin^2x$
👉$\cos^4x-\sin^4x$ $=(\cos^2x)^2-(\sin^2x)^2$ $=(\cos^2x+\sin^2x)(\cos^2x-\sin^2x)$ $=1\times(1-2\sin^2x)$ $=1-2\sin^2x$