Suites : Exercice 34 2ème année secondaire
Calcul dans IRProblèmes du 1er et du second degréNotion de polynômesArithmetiqueCalcul vectorielBarycentreTranslationsHomothetiesRotationsSuitesFonctionsTrigonométrieGéométrie analytiqueGéométrie dans l'espaceStatistiquesQCM
86 exercices
Exercice 34 --- (id : 952)
correction
1
$U_{10}-U_5=(10-5)r$ $\iff 5r=21-11=10$ $\iff \boxed{r=\frac{10}{5}=2}$
$U_5=U_0+5r$ $\iff U_0=U_5-5r$ $\iff U_0=11-10$ $\iff \boxed{U_0=1}$
$U_5=U_0+5r$ $\iff U_0=U_5-5r$ $\iff U_0=11-10$ $\iff \boxed{U_0=1}$
2
Pour tout entier naturel $n$, $U_n=U_0+nr$ $\iff \boxed{U_n=1+2n}$
3
a
$$\begin{align*}
S_n&=U_3+U_4+...+U_{n-1}\\
&=\dfrac{(n-1)-3+1}{2}(U_3+U_{n-1})\\
&=\dfrac{n-3}{2}[(1+2\times3)+(1+2(n-1))]\\
&=\dfrac{n-3}{2}(7+1+2n-2)\\
&=\dfrac{(n-3)(2n+6)}{2}\\
&=(n-3)(n+3)=n^2-9
\end{align*}$$
b
$S_n=160$ $\iff n^2-9=160$ $\iff n^2-169=0$ $\iff n^2-13^2=0$ $\iff (n-13)(n+13)=0$ $\iff n-13=0$ ou $n+13=0$ $\iff n=13$ ou $n=-13\notin \Bbb N$ $\iff \boxed{n=13}$