Exercice 32 --- (id : 953)
Suites: Exercice 32
correction
1 $U_6=U_2+(6-2)r$ $\iff r=\dfrac{U_6-U_2}{4}$ $\iff r=\dfrac{-16+4}{4}$ $\iff \boxed{r=-3}$
$U_2=U_0+2r$ $\iff U_0=U_2-2r$ $\iff \boxed{U_0=-4+6=2}$
2 $U_n=U_0+nr$ $\iff \boxed{U_n=2-3n}$
3 $S=U_3+U_4+...+U_{14}$ $=\dfrac{14-3+1}{2}(U_3+U_{14})$ $=6(2-3\times3+2-3\times14)$ $=6(4-9-42)=-282$
4
a $S_n=\dfrac{n+1}{2}(U_0+U_n)$ $=\dfrac{n+1}{2}(2+(2-3n))$ $=\dfrac{(n+1)(4-3n)}{2}$ $=\dfrac{4n-3n^2+4-3n}{2}$ $=\dfrac{-3n^2+n+4}{2}$
b $S_n=-143$ $\iff \dfrac{-3n^2+n+4}{2}=-143$ $\iff -3n^2+n+4=-286$ $\iff 3n^2-n-290=0$ or $\Delta=3481$ et $\sqrt \Delta=59$ donc $n=\dfrac{1+59}{6}=10$ ou $n=\dfrac{1-59}{6}\notin \Bbb N$ d'où
$S_n=-143$ $\iff n=10$