Exercice 24 --- (id : 975)
Activités numériques II: Exercice 24
correction
1Faux $\dfrac{2}{3}-\dfrac{2}{3}\times\dfrac{1}{2}-\dfrac{1}{2}$ $=\dfrac{2}{3}-\left({\dfrac{2}{3}\times\dfrac{1}{2}}\right)-\dfrac{1}{2}$ $=\dfrac{2}{3}-\dfrac{1}{3}-\dfrac{1}{2}$ $=\dfrac{1}{3}-\dfrac{1}{2}=\dfrac{2}{6}-\dfrac{3}{6}=-\dfrac{1}{6}$
2Vrai $a>0\Longrightarrow |a|=a$ et $b<0\Longrightarrow |b|=-b$
$\sqrt{a^2b^2}=\sqrt{a^2}\sqrt{b^2}$ $=|a||b|=a(-b)=-ab$
3Vrai $$\begin{align*} &\sqrt{n+1}-\sqrt{n}\\ &=\dfrac{\left({\sqrt{n+1}-\sqrt{n}}\right)\left({\sqrt{n+1}+\sqrt{n}}\right)}{\sqrt{n+1}+\sqrt{n}}\\ &=\dfrac{\left({\sqrt{n+1}}\right)^2-\left({\sqrt{n}}\right)^2}{\sqrt{n+1}+\sqrt{n}}\\ &=\dfrac{n+1-n}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}} \end{align*}$$
4Vrai $1+\dfrac{1}{1+\sqrt{2}}$ $=1+\dfrac{\sqrt{2}-1}{(\sqrt{2}-1)(\sqrt{2}+1)}$ $=1+\dfrac{\sqrt{2}-1}{\sqrt{2}^2-1^2}$ $=1+\dfrac{\sqrt{2}-1}{2-1}$ $=1+\sqrt{2}-1=\sqrt{2}$