Exercice 10 --- (id : 1312)
Activités numériques II: Exercice 10
correction
1)
a) 2<2\sqrt{2}<2 donc 22<0\sqrt{2}-2<0 d'où 22=22\left|{\sqrt{2}-2}\right|=2-\sqrt{2}
3>23>\sqrt{2} donc  32>03-\sqrt{2}>0 d'où 32=32\left|{3-\sqrt{2}}\right|=3-\sqrt{2} alors :
a=22+322a=\left|{\sqrt{2}-2}\right|+\left|{3-\sqrt{2}}\right|-2
=22+322=2-\sqrt{2}+3-\sqrt{2}-2
=322=3-2\sqrt{2}
b=(1+2)2b=\left({1+\sqrt{2}}\right)^2
=12+2×1×2+(2)2=1^2+2\times 1\times \sqrt{2}+\left({\sqrt{2}}\right)^2
=1+22+2=1+2\sqrt{2}+2
=3+22=3+2\sqrt{2}
b) ab=(322)(3+22)=32(22)2=922×22=98=1\begin{align*} ab&=\left({3-2\sqrt{2}}\right)\left({3+2\sqrt{2}}\right) \\ &=3^2-\left({2\sqrt{2}}\right)^2 \\ &=9-2^2\times \sqrt{2}^2=9-8=1 \\ \end{align*} (a2b)2a4a3b1  =a4b2a4a3b1  =a4+4+3b2+1  =a3b3=(ab)3\begin{align*} &\frac{\left({a^{-2}b}\right)^2a^4}{a^{-3}b^{-1}} \\ &\;=\frac{a^{-4}b^2a^4}{a^{-3}b^{-1}} \\ &\;=a^{-4+4+3}b^{2+1} \\ &\;=a^3b^3=\left({ab}\right)^3 \end{align*}
c) ab=1ab=1 donc
(a2b)2a4a3b1=(ab)3=13=1\frac{\left({a^{-2}b}\right)^2a^4}{a^{-3}b^{-1}}=\left({ab}\right)^3 =1^3=1
2)
a) X2=(45)2=422×4×5+52=1685+5=2185Y2=(25)2=222×2×5+52=445+5=945\begin{align*} X^2 &=\left({4-\sqrt{5}}\right)^2 \\ &=4^2-2\times 4\times \sqrt{5}+\sqrt{5}^2 \\ &=16-8\sqrt{5}+5 \\ &=21-8\sqrt{5} \\ Y^2 &=\left({2-\sqrt{5}}\right)^2 \\ &=2^2-2\times2\times\sqrt{5}+\sqrt{5}^2 \\ &=4-4\sqrt{5}+5 \\ &=9-4\sqrt{5} \end{align*}
b) 2185945=(45)2(25)2=4525=(45)(52)=455+2=625   \begin{align*} &\sqrt{21-8\sqrt{5}}-\sqrt{9-4\sqrt{5}} \\ &=\sqrt{\left({4-\sqrt{5}}\right)^2}-\sqrt{\left({2-\sqrt{5}}\right)^2} \\ &=\left|{4-\sqrt{5}}\right|-\left|{2-\sqrt{5}}\right| \\ &=\left({4-\sqrt{5}}\right)-\left({\sqrt{5}-2}\right) \\ &=4-\sqrt{5}-\sqrt{5}+2=6-2\sqrt{5}       \end{align*}