Murray R. Spiegel, PhD Former Professor and Chairman Mathematics Department Rensselaer Polytechnic Institute Hartford Graduate Center
Seymour Lipschutz, PhD Mathematics Department Temple University
John Liu, PhD Mathematics Department University of Maryland
Schaum’s Outline Series
Contents
Section I Elementary Constants, Products, Formulas 3 1. Greek Alphabet and Special Constants 3 2. Special Products and Factors 5 3. The Binomial Formula and Binomial Coefficients 7 4. Complex Numbers 10 5. Solutions of Algebraic Equations 13 6. Conversion Factors 15
Section II Geometry 16 7. Geometric Formulas 16 8. Formulas from Plane Analytic Geometry 22 9. Special Plane Curves 28 10. Formulas from Solid Analytic Geometry 34 11. Special Moments of Inertia 41
Section III Elementary Transcendental Functions 43 12. Trigonometric Functions 43 13. Exponential and Logarithmic Functions 53 14. Hyperbolic Functions 56
Section IV Calculus 62 15. Derivatives 62 16. Indefinite Integrals 67 17. Tables of Special Indefinite Integrals 71 18. Definite Integrals 108
Section V Differential Equations and Vector Analysis 116 19. Basic Differential Equations and Solutions 116 20. Formulas from Vector Analysis 119
Section VI Series 134 21. Series of Constants 134 22. Taylor Series 138 23. Bernoulli and Euler Numbers 142 24. Fourier Series 144 Section VII Special Functions and Polynomials 149 25. The Gamma Function 149 26. The Beta Function 152 27. Bessel Functions 153 28. Legendre and Associated Legendre Functions 164 29. Hermite Polynomials 169 30. Laguerre and Associated Laguerre Polynomials 171 31. Chebyshev Polynomials 175 32. Hypergeometric Functions 178
Section VIII Laplace and Fourier Transforms 180 33. Laplace Transforms 180 34. Fourier Transforms 193
Section IX Elliptic and Miscellaneous Special Functions 198 35. Elliptic Functions 198 36. Miscellaneous and Riemann Zeta Functions 203
Section X Inequalities and Infinite Products 205 37. Inequalities 205 38. Infinite Products 207
Section XI Probability and Statistics 208 39. Descriptive Statistics 208 40. Probability 217 41. Random Variables 223
Section XII Numerical Methods 227 42. Interpolation 227 43. Quadrature 231 44. Solution of Nonlinear Equations 233 45. Numerical Methods for Ordinary Differential Equations 235 46. Numerical Methods for Partial Differential Equations 237 47. Iteration Methods for Linear Systems 240
Section I Logarithmic, Trigonometric, Exponential Functions 245 1. Four Place Common Logarithms log10 N or log N 245 2. Sin x (x in degrees and minutes) 247 3. Cos x (x in degrees and minutes) 248 4. Tan x (x in degrees and minutes) 249
5. Conversion of Radians to Degrees, Minutes, and Seconds or Fractions of Degrees 250 6. Conversion of Degrees, Minutes, and Seconds to Radians 251 7. Natural or Napierian Logarithms loge x or ln x 252 8. Exponential Functions ex 254 9. Exponential Functions ex 255 10. Exponential, Sine, and Cosine Integrals 256
Section II Factorial and Gamma Function, Binomial Coefficients 257 11. Factorial n 257 12. Gamma Function 258 13. Binomial coefficients 259
Section V Elliptic Integrals 270 29. Complete Elliptic Integrals of First and Second Kinds 270 30. Incomplete Elliptic Integral of the First Kind 271 31. Incomplete Elliptic Integral of the Second Kind 271
Section VI Financial Tables 272 32. Compound amount: (1 + r)^n 272 33. Present Value of an Amount: (1 + r)^(-n) 273 34. Amount of an Annuity: ((1+ r)^n –1)/r 274 35. Present Value of an Annuity: (1– (1+ r)^(-n))/r 275
Section VII Probability and Statistics 276 36. Areas Under the Standard Normal Curve 276 37. Ordinates of the Standard Normal curve 277 38. Percentile Values (tp) for Student's t Distribution 278 39. Percentile Values (?2p) for ?2 (Chi-Square) Distribution 279 40. 95th Percentile Values for the F distribution 280 41. 99th Percentile Values for the F distribution 281 42. Random Numbers 282
Index of Special Symbols and Notations 283 Index 285