by Radmila Bulajich Manfrino, José Antonio Gémez Ortega, Rogelio Valdez Delgado
Pages count :214 pages
Size :1417 Ko
Inequalities A Mathematical Olympiad Approach
Radmila Bulajich Manfrino José Antonio Gémez Ortega Rogelio Valdez Delgado
lnequalities A Mathematical Olympiad Approach
Contents
Introduction vii 1 Numerical Inequalities 1 1.1 Order in the real numbers . . . . . . . . . . . . 1 1.2 The quadratic function ax2 + 2bx + c . . . 4 1.3 A fundamental inequality, arithmetic mean-geometric mean . . . . . . 7 1.4 A wonderful inequality: The rearrangement inequality . . . . . . . . 13 1.5 Convex functions . . . . . . . . . . . . . . . 20 1.6 A helpful inequality . . . . . . . . . . . . 33 1.7 The substitution strategy . . . .. . . . . . 39 1.8 Muirhead’s theorem . . . . . . . . . . . . 43
2 Geometric Inequalities 51 2.1 Two basic inequalities . . . . . . . . . . . . . . . 51 2.2 Inequalities between the sides of a triangle . 54 2.3 The use of inequalities in the geometry of the triangle .59 2.4 Euler’s inequality and some applications . . 66 2.5 Symmetric functions of a, b and c . . . . . . . . 70 2.6 Inequalities with areas and perimeters . . . . 75 2.7 Erdos-Mordell Theorem . . . . . . . . . . . . . . . 80 2.8 Optimization problems . . . . . . . . . . . . . . . . 88
3 Recent Inequality Problems 101
4 Solutions to Exercises and Problems 117 4.1 Solutions to the exercises in Chapter 1 . .. . . 117 4.2 Solutions to the exercises in Chapter 2. . . . . 140 4.3 Solutions to the problems in Chapter 3. . . . . 162