Analysis I


Analysis I
by Terence Tao
Pages count :366 pages
Size :2473 ko

Contents

1 Introduction

  • 1.1 What is analysis?
  • 1.2 Why do analysis?

2 Starting at the beginning:the natural numbers

  • 2.1 The Peano axioms
  • 2.2 Addition
  • 2.3 Multiplication

3 Set theory

  • 3.1 Fundamentals
  • 3.2 Russell’s paradox (Optional)
  • 3.3 Functions
  • 3.4 Images and inverse images
  • 3.5 Cartesian products
  • 3.6 Cardinality of sets

4 Integers and rationals

  • 4.1 The integers
  • 4.2 The rationals
  • 4.3 Absolute value and exponentiation
  • 4.4 Gaps in the rational numbers

5 The real numbers

  • 5.1 Cauchy sequences
  • 5.2 Equivalent Cauchy sequences
  • 5.3 The construction of the real numbers
  • 5.4 Ordering the reals
  • 5.5 The least upper bound property
  • 5.6 Real exponentiation, part I

6 Limits of sequences

  • 6.1 Convergence and limit laws
  • 6.2 The Extended real number system
  • 6.3 Suprema and Infima of sequences
  • 6.4 Limsup, Liminf, and limit points
  • 6.5 Some standard limits
  • 6.6 Subsequences
  • 6.7 Real exponentiation, part II

7 Series

  • 7.1 Finite series
  • 7.2 Infinite series
  • 7.3 Sums of non-negative numbers
  • 7.4 Rearrangement of series
  • 7.5 The root and ratio tests

8 Infinite sets

  • 8.1 Countability
  • 8.2 Summation on infinite sets
  • 8.3 Uncountable sets
  • 8.4 The axiom of choice
  • 8.5 Ordered sets

9 Continuous functions on R

  • 9.1 Subsets of the real line
  • 9.2 The algebra of real-valued functions
  • 9.3 Limiting values of functions
  • 9.4 Continuous functions
  • 9.5 Left and right limits
  • 9.6 The maximum principle
  • 9.7 The intermediate value theorem
  • 9.8 Monotonic functions
  • 9.9 Uniform continuity
  • 9.10 Limits at infinity

10 Differentiation of functions

  • 10.1 Basic definitions
  • 10.2 Local maxima, local minima, and derivatives
  • 10.3 Monotone functions and derivatives
  • 10.4 Inverse functions and derivatives
  • 10.5 L’Hopital’s rule

11 The Riemann integral

  • 11.1 Partitions
  • 11.2 Piecewise constant functions
  • 11.3 Upper and lower Riemann integrals
  • 11.4 Basic properties of the Riemann integral
  • 11.5 Riemann integrability of continuous functions
  • 11.6 Riemann integrability of monotone functions
  • 11.7 A non-Riemann integrable function
  • 11.8 The Riemann-Stieltjes integral
  • 11.9 The two fundamental theorems of calculus
  • 11.10 Consequences of the fundamental theorems

A Appendix:the basics of mathematical logic

  • A.1 Mathematical statements
  • A.2 Implication
  • A.3 The structure of proofs
  • A.4 Variables and quantifiers
  • A.5 Nested quantifiers
  • A.6 Some examples of proofs and quantifiers
  • A.7 Equality

B Appendix:the decimal system

  • B.1 The decimal representation of natural numbers
  • B.2 The decimal representation of real numbers
  • Index
  • Texts and Readings in Mathematics

Download