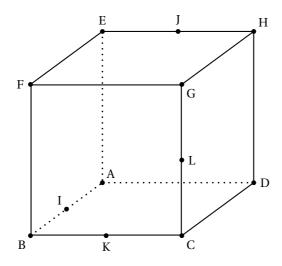


A. P. M. E. P.

EXERCICE 1 6 points



 a) Par lecture sur le dessin ci-dessus on détermine facilement les coordonnées des points représentés :

On obtient alors les coordonnées des quatre points restants

$$I\left(\frac{1}{2}, 0, 0\right); J\left(0, \frac{1}{2}, 1\right); K\left(1, \frac{1}{2}, 0\right); L\left(1, 1, \frac{1}{2}\right).$$

D'où

$$\overrightarrow{\text{FD}}$$
 (-1, 1, -1); $\overrightarrow{\text{IJ}}$ $\left(-\frac{1}{2}, \frac{1}{2}, 1\right)$; $\overrightarrow{\text{IK}}$ $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$

et donc

$$\overrightarrow{FD} \cdot \overrightarrow{IJ} = \frac{1}{2} + \frac{1}{2} - 1 = 0$$
 et $\overrightarrow{FD} \cdot \overrightarrow{IK} = -\frac{1}{2} + \frac{1}{2} + 0 = 0$.

Le vecteur \overrightarrow{FD} est donc normal au plan (IJK), il s'ensuit que la droite (FD) est orthogonale au plan (IJK).

b) Le vecteur \overrightarrow{FD} étant normal au plan (IJK), celui-ci a une équation cartésienne de la forme

$$-x + y - z + d = 0.$$

Or $I\left(\frac{1}{2}, 0, 0\right)$ appartient à ce plan donc

$$-\frac{1}{2} + d = 0 \iff d = \frac{1}{2}$$

le plan (IJK) a donc pour équation

$$-x + y - z + \frac{1}{2} = 0$$
 ou encore $-2x + 2y - 2z + 1 = 0$.

2. La droite (FD) étant dirigée par le vecteur FD (−1, 1, −1) et passant par le point F(1, 0, 1) admet comme représentation paramétrique le système

$$\begin{cases} x = 1 - t \\ y = t \quad \text{avec} \quad t \in \mathbb{R} \\ z = 1 - t \end{cases}$$

3. Les coordonnées (*x*, *y*, *z*) du point d'intersection de la droite (FD) et du plan (IJK) vérifient les deux relations

$$\begin{cases} x = 1 - t \\ y = t \quad (S) \quad \text{et} \quad -2x + 2y - 2z + 1 = 0 \quad (E) \\ z = 1 - t \end{cases}$$

Dans (E), on obtient

$$-2(1-t)+2t-2(1-t)+1=0 \iff 6t-3=0 \iff t=\frac{1}{2}.$$

Ce qui donne, en remplaçant dans (S)

$$x = \frac{1}{2}$$
 $y = \frac{1}{2}$ $z = \frac{1}{2}$.

4. Comme

$$\overrightarrow{IK} \cdot \overrightarrow{IJ} = -\frac{1}{4} + \frac{1}{4} + 0$$

les vecteurs \overrightarrow{IK} et \overrightarrow{IJ} sont orthogonaux, le triangle IJK est donc rectangle. Son aire est

$$\mathcal{A} = \frac{1}{2} \times IJ \times IK = \frac{1}{2} \times \sqrt{\frac{1}{4} + \frac{1}{4} + 1} \times \sqrt{\frac{1}{4} + \frac{1}{4} + 0} = \frac{1}{2} \times \sqrt{\frac{3}{2}} \times \sqrt{\frac{1}{2}} = \frac{\sqrt{3}}{4}$$

5. Le volume du tétraèdre FIJK est

$$V = \frac{1}{3} \times \text{FM} \times \frac{\sqrt{3}}{4} = \frac{1}{3} \times \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} \times \frac{\sqrt{3}}{4} = \frac{1}{3} \times \frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{4} = \frac{1}{8}$$

6. On détermine un système d'équations paramétriques des droites (IJ) et (KL)

(IJ)
$$\begin{cases} x = \frac{1}{2} - \frac{1}{2}t \\ y = \frac{1}{2}t \\ z = t \end{cases}$$
 et (KL)
$$\begin{cases} x = 1 \\ y = \frac{1}{2} + \frac{1}{2}t' \\ z = \frac{1}{2}t' \end{cases}$$

Ce qui donne le système

$$\begin{cases} \frac{1}{2} - \frac{1}{2}t &= 1\\ & \frac{1}{2}t &= \frac{1}{2} + \frac{1}{2}t'\\ & t &= \frac{1}{2}t' \end{cases}$$

qui admet pour unique solution t = -1 et t' = -2, ce qui prouve que les droites (IJ) et (KL) sont sécantes au point $P\left(1, -\frac{1}{2}, -1\right)$

EXERCICE 2 6 points

1.
$$u_0 = \int_0^1 \frac{1}{1+x} dx = \left[\ln(x+1) \right]_0^1 = \ln(2) - \ln(1) = \ln(2)$$

2. a

$$u_{n+1} + u_n = \int_0^1 \frac{x^{n+1}}{1+x} dx + \int_0^1 \frac{x^n}{1+x} dx$$

$$= \int_0^1 \frac{x^{n+1}}{1+x} + \frac{x^n}{1+x} dx \quad \text{par linéarité}$$

$$= \int_0^1 \frac{x^{n+1} + x^n}{1+x} dx$$

$$= \int_0^1 x^n \frac{x+1}{1+x} dx$$

$$= \int_0^1 x^n dx$$

$$= \left[\frac{x^{n+1}}{n+1} \right]_0^1$$

$$= \frac{1}{n+1}$$

b) Il résulte de la question précédente que $u_1 + u_0 = 1$, or $u_0 = \ln(2)$, donc

$$u_1 = 1 - \ln(2)$$
.

3. a) On peut modifier l'algorithme de la façon suivante

Variables : i et n sont des entiers naturels u est un réel

Entrée : Saisir nInitialisation : Affecter à u la valeur $\ln(2)$ Traitement : Pour i variant de 1 à \mathbf{n} | Affecter à u la valeur $\frac{1}{\mathbf{i}} - \mathbf{u}$ Fin de pour

Sortie : Afficher u

b) On peut conjecturer que la suite (u_n) est décroissante et qu'elle converge vers 0.

4. a)

$$u_{n+1} - u_n = \int_0^1 \frac{x^{n+1}}{1+x} dx - \int_0^1 \frac{x^n}{1+x} dx$$

$$= \int_0^1 \frac{x^{n+1}}{1+x} - \frac{x^n}{1+x} dx \quad \text{par linéarité}$$

$$= \int_0^1 \frac{x^{n+1} - x^n}{1+x} dx$$

$$= \int_0^1 x^n \frac{x-1}{1+x} dx$$

Or $x \in [0, 1]$ donc x^n et 1 + x sont positifs, mais x - 1 est négatif, donc

$$\int_0^1 x^n \frac{x-1}{1+x} \, \mathrm{d}x < 0$$

et par conséquent $u_{n+1} - u_n < 0$, la suite (u_n) est donc décroissante.

b) Tous les termes de cette suite étant positifs, la suite (u_n) est donc minorée par 0. Comme elle est également décroissante, il en résulte d'après le théorème de la convergence monotone qu'elle est convergente.

5. Soit ℓ sa limite, on a donc

$$\lim_{n\to+\infty}u_{n+1}=\lim_{n\to+\infty}u_n=\ell,$$

soit

$$\lim_{n \to +\infty} u_{n+1} + u_n = 2\ell$$

Or

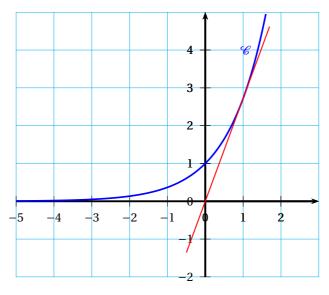
$$\lim_{n\to +\infty} u_{n+1} + u_n = \lim_{n\to +\infty} \frac{1}{n+1} = 0$$

donc

$$2\ell = 0 \iff \ell = 0$$

La suite (u_n) converge donc vers 0.

EXERCICE 3 3 points



Pour tout réel m strictement positif, on note \mathcal{D}_m la droite d'équation y = mx.

1. Une équation de la tangente à la courbe $\mathscr C$ en son point d'abscisse 1 est donné par

$$y = e^1 (x - 1) + e^1 \iff y = ex$$
.

la droite \mathcal{D}_e : y = ex est donc tangente à la courbe \mathscr{C} en son point d'abscisse 1.

- 2. On conjecture que:
 - Si m < e il n'y a aucun point d'intersection.
 - Si m = e il y a un point d'intersection.
 - Si m > e il y a deux points d'intersection.

3. Première solution

Le point M de coordonnées $(x,\ y)$ est un point d'intersection de $\mathcal C$ et de $\mathcal D_m$ si et seulement si

$$e^x = mx \iff e^x - mx = 0.$$

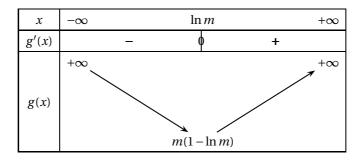
Posons $f(x) = e^x - mx$, alors

$$e^x = mx \iff f(x) = 0.$$

Étudions cette fonction f, il vient :

- $f'(x) = e^x m$
- $\lim_{x \to -\infty} f(x) = +\infty \operatorname{car} \lim_{x \to -\infty} e^x = 0 \operatorname{et} \lim_{x \to -\infty} -mx = +\infty \operatorname{car} m > 0$
- $f(x) = x \left(\frac{e^x}{x} m\right)$, or $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$, donc $\lim_{x \to +\infty} f(x) = +\infty$
- $f'(x) > 0 \iff e^x > m \iff x > \ln(m)$
- $f(\ln(m)) = m m \ln(m) = m(1 \ln(m))$

D'où le tableau de variations



Il résulte de ce tableau de variations que

- si $m(1 \ln(m)) > 0$ alors l'équation f(x) = 0 n'admet pas de solution;
- si $m(1 \ln(m)) = 0$ alors l'équation f(x) = 0 admet une seule solution;
- si $m(1 \ln(m)) < 0$ alors l'équation f(x) = 0 admet deux solutions

Or comme m > 0,

$$m(1-\ln(m)) > 0 \iff 1-\ln(m) > 0 \iff 1 > \ln(m) \iff e > m$$

d'où, en définitive

- si m < e alors la courbe \mathscr{C} et la droite \mathscr{D}_m n'auront aucun point d'intersection;
- si m = e alors la courbe \mathscr{C} et la droite \mathscr{D}_m auront un seul point d'intersection;
- si m > e alors la courbe \mathscr{C} et la droite \mathscr{D}_m auront deux points d'intersection.

Deuxième solution

On veut déterminer dans \mathbb{R} le nombre de solutions de l'équation $e^x = mx$. On sait que m > 0 et que, pour tout x, $e^x > 0$ donc les solutions de cette équation seront strictement positives.

Sur
$$\mathbb{R}_+^*$$
, $e^x = mx \iff \frac{e^x}{x} = m$.

Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = \frac{e^x}{x}$.

Cette fonction est dérivable comme quotient de fonctions dérivables et :

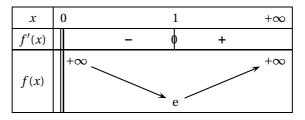
$$f'(x) = \frac{x e^x - e^x}{x^2} = \frac{e^x(x-1)}{x^2}$$

Le signe de f'(x) est le même que le signe de x-1 donc négatif sur]0,1[puis positif sur $]1,+\infty[$. La fonction f admet donc un minimum pour x=1 égal à $f(1)=\frac{e^1}{1}=e$.

D'après le cours,
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$
.

$$\lim_{x \to 0} e^x = 1 \implies \lim_{\substack{x \to 0 \\ x > 0}} \frac{e^x}{x} = +\infty$$

On établit le tableau de variation de la fonction f:



Déterminer le nombre de solutions f(x) = m revient à déterminer le nombre de points d'intersection de la courbe \mathcal{C}_f représentant la fonction f et de la droite horizontale \mathcal{D} d'équation y = m.

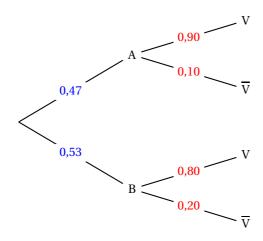
D'après le tableau de variation de f:

- si m < e, la courbe \mathscr{C}_f et la droite \mathscr{D} n'ont pas de point d'intersection donc la droite \mathscr{D}_m et la courbe \mathscr{C} n'ont pas de point d'intersection;
- si m = e, la droite \mathcal{D} est tangente à la courbe \mathcal{C}_f , donc \mathcal{D} et \mathcal{C}_f ont un seul point d'intersection, et donc la droite \mathcal{D}_m et la courbe \mathcal{C} ont un seul point d'intersection;
- si m > e, la droite \mathcal{D} et la courbe \mathcal{C}_f ont deux points d'intersection, donc la droite \mathcal{D}_m et la courbe \mathcal{C} ont deux points d'intersection.

5 points

EXERCICE 4
Candidats n'ayant pas suivi l'enseignement de spécialité

1. On obtient l'arbre suivant



2. a) D'après l'arbre

$$p(V) = 0.47 \times 0.90 + 0.53 \times 0.80 = 0.847.$$

b)
$$p_V(A) = \frac{p(V \cap A)}{p(V)} = \frac{0.47 \times 0.90}{0.847} = 0.499$$

3. La personne interrogée vote effectivement pour le candidat A si elle dit la vérité et dit voter pour le candidat A ou bien si elle ment et dit voter pour le candidat B, soit d'après l'arbre :

$$p(A) = 0.47 \times 0.90 + 0.53 \times 0.20 = 0.529.$$

4. On détermine un intervalle de confiance au seuil de confiance de 95%, par

$$I = \left[0,529 - \frac{1}{\sqrt{1200}}; 0,529 + \frac{1}{\sqrt{1200}}\right] = \left[0,5001; 0,5579\right]$$

Les conditions d'applications étant vérifiées

$$1200 > 30$$
 et $1200 \times 0.5579 > 5$ et $1200 \times 0.4421 > 5$.

La borne inférieur de l'intervalle de confiance au seuil de 95% étant supérieure à 0,5, le candidat A peut raisonnablement croire qu'il sera élu.

5. Par demi-heure, il y a en moyenne $0.4 \times 10 = 4$ personnes qui répondent, soit 8 personnes par

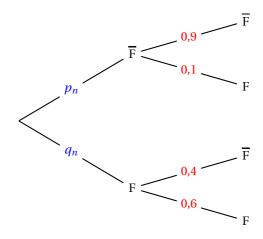
Comme on a besoin d'avoir 1 200 réponses, il faudra en moyenne $\frac{1200}{8}$ = 150 heures pour parvenir à cet objectif.

Exercice 4 5 points

Candidats ayant suivi l'enseignement de spécialité

1. Puisque $q_0 = 1$, cela signifie que le fumeur a fumé le jour où il a décidé d'arrêter de fumer! Donc il aura une probabilité de 0,6 de fumer le lendemain, et donc $q_1 = 0,6$ soit $p_1 = 0,4$.

2. On peut modéliser la situation par un arbre :



ďoù

$$p_{n+1} = 0.9p_n + 0.4q_n$$
 et $q_{n+1} = 0.1p_n + 0.6q_n$.

Ce qui se traduira par les formules :

- En B3 : = $0.9 \times B2 + 0.4 \times C2$
- En C3 : = $0.1 \times B2 + 0.6 \times C2$

3. a)
$$A + 0.5B = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} + 0.5 \times \begin{pmatrix} 0.2 & -0.8 \\ -0.2 & 0.8 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} + \begin{pmatrix} 0.1 & -0.4 \\ -0.1 & 0.4 \end{pmatrix} = \begin{pmatrix} 0.9 & 0.4 \\ 0.1 & 0.6 \end{pmatrix} = M$$

b) d'une part

$$A^2 = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} \times \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} = \begin{pmatrix} 0.64 + 0.16 & 0.64 + 0.16 \\ 0.16 + 0.04 & 0.16 + 0.04 \end{pmatrix} = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} = A$$

d'autre part

$$A \times B = \begin{pmatrix} 0.8 & 0.8 \\ 0.2 & 0.2 \end{pmatrix} \times \begin{pmatrix} 0.2 & -0.8 \\ -0.2 & 0.8 \end{pmatrix} = \begin{pmatrix} 0.16 - 0.16 & -0.64 + 0.64 \\ 0.04 - 0.04 & -0.16 + 0.16 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

On vérifie de même que

$$\mathbf{B} \times \mathbf{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

- c) On procède par récurrence :
 - Initialisation : C'est vrai pour n = 0, en effet :

$$M^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{et} \quad A + 0.5^0 B = A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Hérédité : supposons que $M^n = A + 0.5^n B$, alors il vient

$$M^{n+1} = M^n \times M = (A + 0.5^n B) \times (A + 0.5B)$$

= $A^2 + 0.5^n B \times A + 0.5A \times B + 0.5^{n+1} B^2$
= $A + 0.5^{n+1} \times B$

• Conclusion : pour tout *n*

$$M^n = A + 0.5^n B.$$

d) Comme $X_n = \begin{pmatrix} p_n \\ q_n \end{pmatrix}$ et que $X_n = M^n \times X_0$, il vient

$$\mathbf{X}_{n} = (\mathbf{A} + 0.5^{n} \mathbf{B}) \times \mathbf{X}_{0} = \begin{pmatrix} 0.8 + 0.5^{n} \times 0.2 & 0.8 - 0.5^{n} \times 0.8 \\ 0.2 - 0.5^{n} \times 0.2 & 0.2 + 0.5^{n} \times 0.8 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.8 - 0.5^{n} \times 0.8 \\ 0.2 + 0.5^{n} \times 0.8 \end{pmatrix}$$

Donc

$$p_n = 0.8 - 0.8 \times 0.5^n$$

e) Comme 0 < 0.5 < 1, on a $\lim_{n \to +\infty} 0.5^n = 0$ et donc

$$\lim_{n\to+\infty}p_n=0.8.$$

À long terme la probabilité qu'il arrête de fumer va se stabiliser vers 0,8. On n'a pas la certitude qu'il arrêtera de fumer.