SigMathS
Réponse 99:
$\sum\limits_{k=0}^{6}{f(\alpha^kx)}=7A_0+\sum\limits_{k=1}^{20}{A_kx^k(1+\alpha^k+...+\alpha^{6k})}$
si $k\neq 7$ et $k\neq 14$; $1+\alpha^k+...+\alpha^{6k}=\dfrac{1-\alpha^{7k}}{1-\alpha^k}=0$ car $\alpha^{7k}=1 $donc
$$\begin{align*}
\sum\limits_{k=0}^{6}{f(\alpha^kx)}&=7A_0+A_7x^7(1+\alpha^7+...+\alpha^{6\times 7})\\
&+A_{14}x^{14}(1+\alpha^{7\times 2}+...+\alpha^{7\times 14})\\
=&7A_0+7A_7x^7+7A_{14}x^{14}\\
=&7\left({A_0+A_7x^7+A_{14}x^{14}}\right)
\end{align*}$$
Conclusion :
$\beta=7$