SigMathS
Réponse 78:
$$\begin{align*}
&\int_{0}^{\pi}{f(\pi-x)\sin x\,dx}\\
=&\left[{-f(\pi-x)\cos x}\right]_0^\pi-\int_{0}^{\pi}{f'(\pi-x)\cos x\,dx}\\
=&f(0)+f(\pi)+\int_{0}^{\pi}{f'(x)\cos x\,dx}\\
=&f(0)+f(\pi)+\left[{f(x)\cos x}\right]_0^\pi+\int_{0}^{\pi}{f(x)\sin x\,dx}\\
=&f(0)+f(\pi)-f(0)-f(\pi)+\int_{0}^{\pi}{f(x)\sin x\,dx}\\
=&\int_{0}^{\pi}{f(x)\sin x\,dx}
\end{align*}$$
$I=\int_{0}^{\pi}{f(x)\sin x\,dx}$ $=\int_{0}^{\pi}{f(\pi-x)\sin x\,dx}$
Alors $2I=\int_{0}^{\pi}{f(x)\sin x\,dx}+\int_{0}^{\pi}{f(\pi-x)\sin x\,dx}$
$\iff 2I=\int_{0}^{\pi}{(f(x)+f(\pi-x))\sin x\,dx}$
$\iff 2I=\pi^2\int_{0}^{\pi}{\sin x\,dx}=2\pi^2$
Donc $\boxed{I=\pi^2}$