Questions mathématiques diverses

Question 76:
Soit nn un entier naturel.
Déterminer l'expression XnX_n telle que 141.3+243.5+345.7+...+n4(2n1)(2n+1)=148Xn+n16(2n+1)\dfrac{1^4}{1.3}+\dfrac{2^4}{3.5}+\dfrac{3^4}{5.7}+...+\dfrac{n^4}{(2n-1)(2n+1)}=\dfrac{1}{48}X_n+\dfrac{n}{16(2n+1)}
Voir les commentaires sur facebook
Soit $n$ un entier naturel.
Déterminer l'expression $X_n$ telle que $\dfrac{1^4}{1.3}+\dfrac{2^4}{3.5}+\dfrac{3^4}{5.7}+...+\dfrac{n^4}{(2n-1)(2n+1)}=\dfrac{1}{48}X_n+\dfrac{n}{16(2n+1)}$
Réponse 76:

n4(2n1)(2n+1)=4n2+116+132(12n112n+1)\dfrac{n^4}{(2n-1)(2n+1)}=\dfrac{4n^2+1}{16}+\dfrac{1}{32}\left({\dfrac{1}{2n-1}-\dfrac{1}{2n+1}}\right)
k=1n(12k112k+1)\sum\limits_{k=1}^{n}{\left({\dfrac{1}{2k-1}-\dfrac{1}{2k+1}}\right)} =113+1315+...+12n112n+1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1} =112n+1=2n2n+1=1-\dfrac{1}{2n+1}=\dfrac{2n}{2n+1}

Rappel

k=1nk2=n(n+1)(2n+1)6\sum\limits_{k=1}^{n}{k^2}=\dfrac{n(n+1)(2n+1)}{6}

Sn=k=1nk4(2k1)(2k+1)=k=1n4k2+116+132(12k112k+1)=14k=1nk2+k=1n116+1322n2n+1=14n(n+1)(2n+1)6+n16+n16(2n+1)=2n3+3n2+n24+3n48+n16(2n+1)=4n3+6n2+5n48+n16(2n+1)\begin{align*} S_n&=\sum\limits_{k=1}^{n}{\dfrac{k^4}{(2k-1)(2k+1)}}\\ &=\sum\limits_{k=1}^{n}{\dfrac{4k^2+1}{16}+\dfrac{1}{32}\left({\dfrac{1}{2k-1}-\dfrac{1}{2k+1}}\right)}\\ &=\dfrac{1}{4}\sum\limits_{k=1}^{n}{k^2}+\sum\limits_{k=1}^{n}{\dfrac{1}{16}}+\dfrac{1}{32}\dfrac{2n}{2n+1}\\ &=\dfrac{1}{4}\dfrac{n(n+1)(2n+1)}{6}+\dfrac{n}{16}+\dfrac{n}{16(2n+1)}\\ &=\dfrac{2n^3+3n^2+n}{24}+\dfrac{3n}{48}+\dfrac{n}{16(2n+1)}\\ &=\dfrac{4n^3+6n^2+5n}{48}+\dfrac{n}{16(2n+1)} \end{align*} Donc Xn=4n3+6n2+5nX_n=4n^3+6n^2+5n

Retour

Toutes les questions