SigMathS
Réponse 76:
(2n−1)(2n+1)n4=164n2+1+321(2n−11−2n+11)
k=1∑n(2k−11−2k+11) =1−31+31−51+...+2n−11−2n+11 =1−2n+11=2n+12n
Rappel
k=1∑nk2=6n(n+1)(2n+1)
Sn=k=1∑n(2k−1)(2k+1)k4=k=1∑n164k2+1+321(2k−11−2k+11)=41k=1∑nk2+k=1∑n161+3212n+12n=416n(n+1)(2n+1)+16n+16(2n+1)n=242n3+3n2+n+483n+16(2n+1)n=484n3+6n2+5n+16(2n+1)n
Donc
Xn=4n3+6n2+5n