SigMathS
Réponse 60:
$f(x)$ existe
$\iff \left\{{\begin{aligned}&{18x-x^2-77 > 0}\\&{\log_3(18x-x^2-77) >0}\\&{\log_5(\log_3(18x-x^2-77)) > 0}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{x^2-18x+ 77<0}\\&{18x-x^2-77 >3^0}\\&{\log_3(18x-x^2-77) > 5^0=1}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{(x-7)(x-11)<0}\\&{18x-x^2-77 >1}\\&{18x-x^2-77 > 3^1}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{7 < x < 11}\\&{18x-x^2-80 > 0}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{7 < x < 11}\\&{x^2-18x+80 < 0}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{7 < x < 11}\\&{(x-8)(x-10) < 0}\end{aligned}}\right.$
$\iff \left\{{\begin{aligned}&{7 < x < 11}\\&{8 < x < 10}\end{aligned}}\right.$ $\iff x\in\left]{8,10}\right[$