SigMathS
Réponse 52:
$0 < \theta < \frac{\pi}{16}\Longrightarrow$ $0 < \theta<2\theta<4\theta<8\theta<\dfrac{\pi}{2}$
$\Longrightarrow \cos \theta > 0 ,\;\cos 2\theta > 0,$ $\;\cos 4\theta >0 \;et\;\cos 8\theta > 0$
$$\begin{align*}
&\sqrt{2+\sqrt{2+\sqrt{2+2\cos 8\theta}}}\\
&=\sqrt{2+\sqrt{2+\sqrt{2(1+\cos 8\theta)}}}\\
&=\sqrt{2+\sqrt{2+\sqrt{4\cos^2 4\theta}}}\\
&=\sqrt{2+\sqrt{2+2\cos 4\theta}}\\
&=\sqrt{2+\sqrt{2(1+\cos 4\theta)}}\\
&=\sqrt{2+\sqrt{4\cos^2 2\theta}}\\
&=\sqrt{2+2\cos 2\theta}\\
&=\sqrt{2(1+\cos 2\theta)}\\
&=\sqrt{4\cos^2 \theta}\\
&=2\cos \theta
\end{align*}$$