SigMathS
Réponse 13:
Posons $u_n=\left({\dfrac{n!}{(mn)^n}}\right)^{\frac{1}{n}}$
$$\begin{align*}
&\lim\limits_{n \to +\infty}\ln u_n\\
=&\lim\limits_{n \to +\infty}\dfrac{1}{n}\ln\left({\dfrac{n!}{(mn)^n}}\right)\\
=&\lim\limits_{n \to +\infty}\dfrac{1}{n}\left({\ln\left({\dfrac{1}{m^n}}\right)+\ln\left({\dfrac{n!}{n^n}}\right)}\right)\\
=&-\ln m+\lim\limits_{n \to +\infty}\dfrac{1}{n}\sum_{k=1}^{n}{\ln\left({\dfrac{k}{n}}\right)}\\
=&-\ln m+\int_{0}^{1}{\ln x\,dx}\\
=&-\ln m-1=-\ln m-\ln e\\
=&-\ln(em)
\end{align*}$$
Donc $\lim\limits_{n \to +\infty}u_n=e^{-\ln(em)}=\dfrac{1}{em}$
Remarque
$\int_{0}^{1}{\ln x\,dx}=\lim\limits_{\epsilon \to 0^+}\int_{\epsilon}^{1}{\ln x\,dx}=\lim\limits_{\epsilon \to 0^+}\left[{x\ln x-x}\right]_{\epsilon}^{1}=-1$